(5y+2y^2+3)+(-5y^2+2y)=

Simple and best practice solution for (5y+2y^2+3)+(-5y^2+2y)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5y+2y^2+3)+(-5y^2+2y)= equation:


Simplifying
(5y + 2y2 + 3) + (-5y2 + 2y) = 0

Reorder the terms:
(3 + 5y + 2y2) + (-5y2 + 2y) = 0

Remove parenthesis around (3 + 5y + 2y2)
3 + 5y + 2y2 + (-5y2 + 2y) = 0

Reorder the terms:
3 + 5y + 2y2 + (2y + -5y2) = 0

Remove parenthesis around (2y + -5y2)
3 + 5y + 2y2 + 2y + -5y2 = 0

Reorder the terms:
3 + 5y + 2y + 2y2 + -5y2 = 0

Combine like terms: 5y + 2y = 7y
3 + 7y + 2y2 + -5y2 = 0

Combine like terms: 2y2 + -5y2 = -3y2
3 + 7y + -3y2 = 0

Solving
3 + 7y + -3y2 = 0

Solving for variable 'y'.

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-1 + -2.333333333y + y2 = 0

Move the constant term to the right:

Add '1' to each side of the equation.
-1 + -2.333333333y + 1 + y2 = 0 + 1

Reorder the terms:
-1 + 1 + -2.333333333y + y2 = 0 + 1

Combine like terms: -1 + 1 = 0
0 + -2.333333333y + y2 = 0 + 1
-2.333333333y + y2 = 0 + 1

Combine like terms: 0 + 1 = 1
-2.333333333y + y2 = 1

The y term is -2.333333333y.  Take half its coefficient (-1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
-2.333333333y + 1.361111112 + y2 = 1 + 1.361111112

Reorder the terms:
1.361111112 + -2.333333333y + y2 = 1 + 1.361111112

Combine like terms: 1 + 1.361111112 = 2.361111112
1.361111112 + -2.333333333y + y2 = 2.361111112

Factor a perfect square on the left side:
(y + -1.166666667)(y + -1.166666667) = 2.361111112

Calculate the square root of the right side: 1.536590743

Break this problem into two subproblems by setting 
(y + -1.166666667) equal to 1.536590743 and -1.536590743.

Subproblem 1

y + -1.166666667 = 1.536590743 Simplifying y + -1.166666667 = 1.536590743 Reorder the terms: -1.166666667 + y = 1.536590743 Solving -1.166666667 + y = 1.536590743 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + y = 1.536590743 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + y = 1.536590743 + 1.166666667 y = 1.536590743 + 1.166666667 Combine like terms: 1.536590743 + 1.166666667 = 2.70325741 y = 2.70325741 Simplifying y = 2.70325741

Subproblem 2

y + -1.166666667 = -1.536590743 Simplifying y + -1.166666667 = -1.536590743 Reorder the terms: -1.166666667 + y = -1.536590743 Solving -1.166666667 + y = -1.536590743 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + y = -1.536590743 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + y = -1.536590743 + 1.166666667 y = -1.536590743 + 1.166666667 Combine like terms: -1.536590743 + 1.166666667 = -0.369924076 y = -0.369924076 Simplifying y = -0.369924076

Solution

The solution to the problem is based on the solutions from the subproblems. y = {2.70325741, -0.369924076}

See similar equations:

| 7+0.20=5+0.30 | | 6-(-2a)+3a=8 | | (x-8)+15=12 | | -82+10x=139-3x | | 15+n=55 | | 12=6(c+5)-3c | | (3w^2)-9=0 | | 3b^4-b^2=24 | | -6n-37=-2n+4(1-3n) | | (x+3)(x+3)=31 | | 7z+6=10z-30 | | -15-6x=15-4x | | (3x+10)+(5x+10)=180 | | 3x^2+x-2=6x | | (a^2+a+3)+(15a^2+2a+9)= | | 30000=30(1+0.6) | | 2x=272 | | 4x+6+90=180 | | 22(x)=31(x) | | -17=-6x-5(-2x+13) | | y^4=4y^2+45 | | 62n=62 | | 6x+9x-27=180 | | -8y+5(y-2)=-31 | | -4(2-5z)=-32+14z | | -4(3x+2y)-2(-6x+4y)= | | X+42=2x+72 | | 6z+38=8z-5 | | 8x-23=6x+23 | | 4(3x+2y)-2(-6x+4y)= | | 2X+(-2)-(-1)-2x=x+4+(-1)-(-3x) | | 9x-27=90 |

Equations solver categories